技術論文

溶解炉における電磁攪拌シミュレーションの開発

Development of a Simulation Model for Electromagnetic Stirring in Melting Furnace

高橋 功一	石川 宣仁
Koichi Takahashi	Nobuhito Ishikawa

概要 アルミニウム溶湯製造時の溶解炉や保持炉などで,溶解速度や攪拌混合速度の向上を目的とし て幅広く実用化されている電磁攪拌装置を長期間使用し続けた場合に電磁攪拌効果が低下する現象 があり,その低下要因の1つとして,炉床耐火物の損耗によるアルミニウム浸透現象が考えられてい る。本研究では,電磁攪拌効果の低下を定量的に評価するため,溶解炉内の電磁場解析モデルおよび アルミニウム塊の溶解を考慮した熱流動解析モデルを構築した。電磁場解析により,炉床耐火物への アルミニウム浸透に起因する炉内の発生磁場の減衰を立証し,さらに熱流動解析により,磁場減衰に 伴うアルミニウム溶湯流動の低下によるアルミニウム塊の溶解遅れを定量的に示すことができた。

Abstract: Electromagnetic stirrers (EMSs) are broadly used in aluminum melting and/or holding furnaces to enhance the melting rate of scrap aluminum and mixing speed of molten aluminum. In case an EMS is used for a long period of manufacturing, a decrease in the stirring effect is sometimes observed, and one of the reasons is believed to be a penetration phenomenon of molten metal into the furnace lining. In this paper, a simulation model for electromagnetic analysis of melting furnace and thermal fluid dynamic analysis of aluminum ingot melting was developed. Results of electromagnetic field analysis showed that refractory brick, when penetrated by the molten aluminum, shielded the alternating magnetic field. Thermal fluid dynamic analysis indicated quantitatively a time delay in aluminum melting due to a decrease in the electromagnetic stirring force caused by penetration of aluminum into the furnace lining.

1. はじめに

電磁攪拌装置(以下, EMS)は, 鉄鋼業をはじめ金属素 材製造分野において幅広く実用化されている。アルミニ ウム鋳造分野では, 主に溶解炉や保持炉に導入されてお り, 炉底下部に設置するタイプ, 炉側壁に設置するタイ プ, 炉よりサイドウェルを介して設置するタイプなどさ まざまである^{1)~6)}。EMSの原理は, 一方向に移動する 磁場を炉内に発生させ, アルミニウム溶湯に生じる誘導 電流と発生磁場との相互作用によってアルミニウム溶湯 に電磁力を作用させることである。その結果として, 非 接触で溶湯を攪拌混合できるため, 溶解速度の向上, 成 分の均一化, 発生ドロスの低減などがEMSの利点であ る。他方, 欠点としては, 強力な攪拌力による炉床耐火 物の損耗促進(図1)が挙げられる。炉床耐火物の損耗が 激しい場合,耐火物の隙間にアルミニウム溶湯が浸透し,

アルミニウムの磁場遮蔽効果による攪拌力低下が懸念さ れている。実操業においても、EMSを連続使用してい ると、攪拌力の低下やアルミニウム塊の溶解遅れを経験

することがある。

これまでEMSの発生磁場および電磁力を数式化し、 実測値と比較した報告²⁾や、EMSによる流動を模擬した 水モデル実験を行い.実機への設置位置の最適化を図っ た報告3)などがある。しかしながら、アルミニウム浸透 現象やそれに伴う攪拌力低下や溶解遅れを理論的に扱っ た報告は見当たらない。そこで本研究では、炉床耐火物 へのアルミニウム浸透によるEMSの攪拌力低下および 溶解遅れを定量的に評価できる、耐火物層を含めた溶解 炉内の電磁場解析モデルと、電磁力によるアルミニウム 溶湯流動とアルミニウム塊の溶解を考慮した熱流動解析 モデルを構築し、両者を結び付けて解析を行った。

2. 理論解析モデル

2.1 電磁場解析

図2にEMSを設置した溶解炉内の電磁場解析モデル を示す。EMSから発生する交流磁場を、水平方向(x正 方向)に移動する磁場とし、EMS表面から炉内部までを 炉床耐火物領域,アルミニウム浸透領域および炉内部領 域の3つの領域に分ける。なお、奥行き方向(y方向)は 簡略化のため無限遠とし、磁束密度ベクトルはx.z方向 のみとする。発生磁場に関する支配方程式は、Maxwell の式から導出される以下の磁場拡散方程式である7)。

$$\frac{\partial \vec{B}}{\partial t} = \frac{1}{\mu_e \sigma} \nabla^2 \vec{B} \tag{1}$$

ここで、 \vec{B} は磁東密度ベクトル、 μ_e は透磁率、 σ は導電 率である。交流移動磁場の磁東密度ベクトルのz方向成 分を以下の式で与える。

$$B_{z} = B_{z}(z) \exp j(\omega t - kx) \tag{2}$$

ここで, k は波数, ω は角周波数, j は虚数である。式(2) を式(1)に代入すると、 $B_z(z)$ に関する以下の2階常微分 方程式を得る。

$$\frac{\mathrm{d}^2 B_z(z)}{\mathrm{d}z^2} = \left(k^2 + j\mu_e\omega\sigma\right)B_z(z) \tag{3}$$

式(3)を図2に示す各領域間の境界条件(磁東密度の 連続性)を元に、解析的に解くと、以下の解を得る8)。

〔領域1〕 炉床耐火物領域 $(0 \le z < z_1)$:

$$B_{z}(z) = B_{0} \begin{bmatrix} C_{1} \exp(-\beta_{1} z) + D_{1} \exp(\beta_{1} z) \end{bmatrix}$$
(4)
頁域 2) アルミニウム浸透領域 ($z_{1} \le z \le z_{0}$):

[領域2] アルミニウム浸透領域
$$(z_1 \le z < z_2)$$
:
 $B(z) = B[C \exp(-\beta_z) + D \exp(-\beta_z)]$ (5)

$$D_z(z) = D_0[C_2 \exp(-p_2 z) + D_2 \exp(p_2 z)]$$
 (5)
〔領域3〕炉内部領域 ($z \ge z_2$):

$$B_{z}(z) = B_{0}C_{3}\exp(-\beta_{3}z)$$
(6)

ここで、 B_0 はEMS表面での磁束密度、 C_1 、 D_1 、 C_2 、 D_2 , C_3 は係数であり, 詳細は使用記号欄に記す。また, β;は以下の式で与えられ, 添え字iは各領域を示している。 2 7)

$$\beta_{i} = k^{2} + j\mu_{e}\omega\sigma_{i} \tag{7}$$

各領域の導電率σ;に関しては、以下のように与える。 〔領域1〕 炉床耐火物は非導電性物質である:

 $\sigma_1 = 0$

〔領域2〕アルミニウム浸透領域の導電率は固体アルミ ニウムの導電率とアルミニウム体積分率αの 積とする:

 $\sigma_2 = \alpha \times \sigma_{Al(S)}$

〔領域3〕溶解炉内にアルミニウム溶湯がない場合:

 $\sigma_3 = 0$ 溶解炉内にアルミニウム溶湯が有る場合:

 $\sigma_3 = \sigma_{Al(L)}$

ここで, $\sigma_{Al(S)}$ は固体アルミニウムの導電率, $\sigma_{Al(L)}$ は 液体アルミニウムの導電率である。なお磁束密度ベクト

溶解炉内のアルミニウム溶湯に作用する電磁力はフレ ミングの法則によって以下の式で表される。

$$\vec{F} = \vec{J} \times \vec{B} \tag{8}$$

ここで、 *i* は誘導電流ベクトルであり、発生磁場より 以下の式で得られる。

$$\vec{J} = \frac{1}{\mu_e} \nabla \times \vec{B} \tag{9}$$

図2においてy方向は無限遠と仮定し、磁場勾配はな いとしたため、誘導電流ベクトルはv成分のみとなり、 以下の式となる。

$$J_{y} = \frac{1}{\mu_{e}} \left(\frac{\partial B_{x}}{\partial z} - \frac{\partial B_{z}}{\partial x} \right)$$
(10)

従って、式(8)より得られる電磁力のx方向成分の時 間平均値として整理すると、以下の式となる。

$$F_{\rm x} = \frac{\left|C_3\right|^2 B_0^2 \omega \sigma}{2k} \exp\left(-2\operatorname{Re}\beta_3 z\right) \tag{11}$$

式(11)がアルミニウム溶湯の駆動力となる。

2.2 熱流動解析

EMSを用いた場合の溶解炉内のアルミニウム溶解挙 動をシミュレートするためには、前述の電磁力によって 駆動されるアルミニウム溶湯の流れとアルミニウム塊の 溶解を考慮した熱流動解析モデルを構築する必要があ

る。熱流動に関する基本式は、擬似圧縮法に基づく質量 保存の式(12)、電磁駆動力と自然対流を考慮した運動量 保存の式(Navier-Stokesの式)式(13)~式(15)、アルミ ニウム塊の溶解を等価比熱法にて考慮したエネルギー保 存の式(16)である。それぞれを以下に示す。

$$\frac{1}{\rho c^2} \frac{\partial P}{\partial t} + \nabla \cdot \vec{v} = 0 \tag{12}$$

$$\rho \left(\frac{\partial}{\partial t} + \vec{v} \cdot \nabla\right) u = -\frac{\partial P}{\partial x} + \mu \nabla^2 u + F_x$$
(13)

$$\rho \left(\frac{\partial}{\partial t} + \vec{v} \cdot \nabla \right) v = -\frac{\partial P}{\partial y} + \mu \nabla^2 v \tag{14}$$

$$\rho \left(\frac{\partial}{\partial t} + \vec{v} \cdot \nabla \right) w = -\frac{\partial P}{\partial z} + \mu \nabla^2 w + \rho g \beta_t \Delta T$$
(15)

$$\rho \left(C_{p} - L_{h} \frac{\partial f}{\partial T} \right) \left(\frac{\partial}{\partial t} + \vec{v} \cdot \nabla \right) T = \kappa \nabla^{2} T + S$$
(16)

ここで, ρ は密度,cは圧力伝播速度, \vec{v} (u, v, w)は流体の速度ベクトル, μ は粘度, F_x は電磁力, β_t は体膨張係数, ΔT はz方向の温度差,gは重力加速度, C_p は比熱, L_h は潜熱, κ は熱伝導率,Sは流体せん断エネルギーである。また,fは固相率で以下の式で与える。

$$f = 1 - \frac{T - T_S}{T_L - T_S} \quad (at \ T_S < T < T_L)$$

$$f = 0 \qquad (at \ T \ge TL) \tag{18}$$

$$f=1 \qquad (at \ T \le Ts) \tag{19}$$

ここで、 T_S は固相線温度、 T_L は液相線温度である。固 相率を導入することでアルミニウム塊の溶解状況を模擬 することができる。一般に、電磁攪拌による流動解析に は乱流モデルを用いることが多いが $9^{1.10}$ 、本研究では計 算負荷低減のため層流モデルを採用した。

図3に示すように、溶解炉は円形炉とし、計算の初期 状態としては、直方体のアルミニウム塊(約1トン)を20 個配置し、アルミニウム溶湯がアルミニウム塊を完全に 覆った状態とした。これは、実操業においても電磁攪拌 を開始するタイミングは、溶解材料を装入した後、材料 が溶解してアルミニウム溶湯面がある程度形成された時 点であることから、妥当な仮定である。温度、流動に関 する初期条件および境界条件を以下に示す。

〔初期条件〕

- ●アルミニウム塊の初期温度は固相線温度。
- ●アルミニウム溶湯の初期温度は液相線温度。
- ●アルミニウム溶湯は静止状態。
- 全アルミニウム重量70トン。(内, アルミニウム 塊重量20トン)

(Non-slip, Thermal insulation)

- 図3 溶解炉内の熱流動解析モデル
- Fig.3 Thermal fluid dynamic analysis model of the melting furnace.
- **表1** 計算に用いた3004合金の物性値
- Table 1 Physical properties of 3004 alloy used in the calculation.

	Liquid phase	Solid phase
Density (kg/m ³)	2300	2700
Thermal conductivity $(W/m \cdot °C)$	218	240
Specific heat (kJ/kg · °C)	1.15	0.95
Electrical conductivity (S/m)	4.0 × 10 ⁶	2.4 × 107
Viscosity (Pa · s)	1.3 × 10-3	
Volume expansion coefficient (1/°C)	1.0 × 10 ⁻⁷	
Latent heat (kJ/kg)	389	
Liquidus temperature (°C)	648	
Solidus temperature (°C)		35
Magnetic permeability (H/m)	$4\pi \times 10^{-7}$	

〔境界条件〕

- ●炉壁・炉底・アルミニウム塊表面で流速ゼロ。
- ●アルミニウム塊自身の移動は考慮しない。
- ●溶湯表面の変形は考慮しない。
- ●固相率が0.9以上の場合,流速はゼロ。
- ●炉壁・炉底は断熱条件。
- ●溶湯表面は常に燃焼ガス温度1000℃で一定。
- ●電磁力の作用領域は, EMS直上のみで, 式(11)で 表されるzの関数として与える。

アルミニウム塊を含めた計算領域を直交座標系にて 分割し,式(12)~(16)を有限差分化して,陽的解法にて 非定常計算を行った。なお追跡時間については,実際の EMSの運転が定期的に逆回転を行うなど複雑なため,初 期溶解挙動のみを計算対象とし,EMS稼動開始から11 分後までとした。

3. 解析結果

3.1 磁場解析モデルの妥当性の評価

図4に炉床耐火物へのアルミニウム浸透が存在しない 場合の炉内磁束密度分布の計算値と実測値を示す。実 測値はEMS中央でのz方向磁束密度の測定結果である。 磁場計算に用いた波数kはEMSの仕様より1.7 m⁻¹とし た。計算値と実測値は良く一致しており,本解析モデル は妥当性があるといえる。発生磁場はEMS表面で最も 強く,鉛直方向距離に対して指数関数的に減少する。炉 内底部 ($z/z_2 = 1$)の磁束密度はEMS表面磁束密度 B_0 に 対しておよそ30%まで低下する。

3.2 炉床耐火物へのアルミニウム浸透による磁場低下

図5に炉床耐火物にアルミニウムが浸透した場合の磁 束密度分布を示す。アルミニウム浸透領域に含まれるア ルミニウム体積分率は図1に示される様子から推測して 10%と仮定した。図5はアルミニウム浸透距離 $Lが1/5z_2$ $\sim z_2$ と長くなった場合の計算結果であり、アルミニウ ムの浸透距離が増加するほど、磁場の減衰が大きい。炉 床にすべて浸透した場合 ($L = z_2$)、炉底での磁束密度は EMS表面磁束密度 B_0 に対して16%まで低下する。長期

Fig.5 Vertical distribution of magnetic flux density in case aluminum penetrates into the furnace bricks.

間EMSを使用した際の磁場低下の一例として、炉底($z = z_2$)での磁東密度が表面磁東密度 B_0 に対して18%まで低下した場合を考えると、図5より推定されるアルミニウム浸透領域は、炉床耐火物の全厚さのおよそ3/5となる。

3.3 磁束密度によるアルミニウム溶湯の流動および アルミニウム塊の溶解状況の違い

実際の溶解工程を考える場合, 炉内にアルミニウム溶 湯が存在するため, 領域3の導電率を液体アルミニウム の値にする必要がある。図6に溶解炉内にアルミニウム 溶湯が存在する場合の磁場分布を示す。アルミニウム浸 透有り($L = 3/5z_2$), なし(L = 0)のいずれの条件におい ても, アルミニウム溶湯が炉内に存在する場合, 磁束密 度は低下する。熱流動解析では, 炉内にアルミニウム溶 湯が存在する場合の磁場分布を計算に用いた。

熱流動計算では,正常に磁場が発生している場合(図6 (b)),炉底での磁束密度が40%低下した場合(図6(d)), 比較のためEMSを使用しない場合の3条件について計 算を行った。図7にEMSを稼動させてから約5分半後の 炉内アルミニウム溶湯の流動状況および未溶解のアルミ ニウム塊を示す。EMSが正常に作用している場合,強 い流動が発生し,およそ半数のアルミニウム塊が完全に 溶解している。磁場低下したEMSの場合には,流動は 弱くなり,未溶解のアルミニウム塊は半分以上残ってい る。一方,EMSなしの場合,アルミニウム溶湯の流動は 殆どなく,アルミニウム塊もすべて未溶解のままである。

EMSによって発生する流れの特徴としては、円形炉に 沿った周方向の旋回流と、電磁力が作用する前方炉壁の 炉底部から溶湯表面に向かう上昇流と後方炉壁の下降流 から成る縦方向の循環流を合わせた3次元的な流れであ る。これは、EMSにより発生する電磁力分布が図6に示 されるように炉底部で最も強く、アルミニウム溶湯表面 では殆ど大きさを持たないためである。アルミニウム溶

図6 溶解炉内にアルミニウム溶湯が有る場合の磁場分布 低下

Fig.6 Decrease in magnetic field in the furnace containing aluminum melt.

湯の縦方向の循環流は、図8(a)に示すように、表面の加 熱されたアルミニウム溶湯を炉底まで運び、未溶解のア ルミニウム塊の溶解を促進する働きがある。一方、EMS がない場合、燃焼バーナーによって表面のアルミニウム 溶湯は高温に達するが、図8(b)に示すように、上面加熱 のみであるため熱対流は生じず、熱伝導のみで溶解が進 むため、溶解に時間がかかる。実際に、EMSがない溶解 炉では未溶解のアルミニウム塊やアルミニウム溶湯を 機械的に攪拌する作業が必要となり、大きな作業負荷と なっている。

3.4 アルミニウム塊の初期溶解時間の短縮度合

図9に各条件で顕著に差が出た代表的なアルミニウム 塊中央底部の温度履歴の計算結果を示す。EMSを使用 した場合には、溶解時間の短縮効果が認められ、その効

- 図7 EMS有り(正常,40%低下)となしの場合における溶解 炉内のアルミニウム溶湯流動および未溶解アルミニウ ム塊の計算結果
- Fig.7 Calculated results of aluminum melt flow and nonmelted aluminum ingot in the furnace with EMS (sound, 40% down) and without EMS.

- 図8 EMS有りとなしによる炉内縦断面でのアルミニウム 溶湯流れの違い
- Fig.8 Difference in the vertical flow of aluminum melt in the furnace with and without EMS.

Fig.9 Temperature curves at the center bottom point of aluminum ingots for different conditions.

果はアルミニウム塊の位置によって異なる。アルミニ ウム塊No.①では、EMSを用いた場合にその強さによら ず,攪拌開始後1分半程度で既に溶解し始め、EMSが無 い場合と比較して、8分程度短縮している。前述したよ うに、No.①の位置はEMSによるアルミニウム流動の下 降流が生じる領域であり、表面で加熱された溶湯が次々 に流入してくるからである。

一方, アルミニウム塊No.②では, 磁場低下した(b)の 場合, 正常な(a)の場合と比べて溶解開始時間はおよそ3 分半遅れており, 磁場低下した場合には十分な強さの下 降流が発生しておらず, 加熱されたアルミニウム溶湯が No.②の位置まで十分に到達していないことを示してい る。従って, 耐火物へアルミニウムが浸透し, 炉底での 磁束密度が低下した場合, アルミニウム塊の初期溶解挙 動はアルミニウム塊の位置によって異なる。

実操業においてEMSを使用した場合,EMS開始のタ イミングから完全に溶解するまでの時間として,使用し ない場合と比較して20~30分の短縮効果が得られてい る。本研究ではEMSスタート初期の溶解時間の差とし て計算した結果,EMSを使用した場合の短縮効果は7~ 8分である。EMS反転を数回繰り返すことを考慮する と,時間短縮効果のオーダーはほぼ合っており,妥当性 のある計算結果といえる。

5. おわりに

本研究では、溶解炉に設置した電磁攪拌装置に関する 電磁場解析とアルミニウム塊の初期溶解挙動に関する熱 流動解析を組み合わせることで、炉床耐火物へのアルミ ニウム浸透による電磁攪拌効果への影響を定量的に評価 できる解析手法を確立した。主な解析結果を以下に示す。 (1) 炉床耐火物にアルミニウム溶湯が浸透した場合、

アルミニウム浸透なしの場合と比較して、炉底で

使用記号

\vec{B}	:磁束密度ベクトル
B_0	:EMS表面磁束密度
С	: 圧力伝播速度
C_{p}	:比熱
f	:固相分率
F_{x}	:電磁力のx方向成分
g	:重力加速度
j	: 虚数単位
Ī	:誘導電流ベクトル
k	:波数
L	:アルミ浸透距離
L_h	:溶解潜熱
Р	:圧力
S	:流体せん断エネルギー
Т	:温度
T_L	:液相線温度
T_S	:固相線温度
ΔT	:z方向の温度勾配
$\vec{v} = (u, v, w)$:流体速度ベクトル
α	:浸透領域でのアルミ体積分率
β	:式(7)で表される係数
β_t	:体膨張係数
K	:熱伝導率
μ	:粘度
μ_e	:透磁率
ρ	:密度
σ	:導電率
$\sigma_{Al(S)}$: 固体アルミの導電率
$\sigma_{Al(L)}$:液体アルミの導電率
ω	:角周波数
$C_1 \sim C_3$, $D_1 D_2$:下記で表される係数

$$\begin{split} C_{1} &= \exp(\beta_{1}z_{1})\{\beta'\gamma' \exp(\beta_{2}(z_{2}-z_{1})) + \beta'\gamma'' \exp(\beta_{2}(z_{1}-z_{2}))\}/Y \\ D_{1} &= \exp(-\beta_{1}z_{2})\{\beta'\gamma'' \exp(\beta_{2}(z_{2}-z_{1})) + \beta''\gamma' \exp(\beta_{2}(z_{1}-z_{2}))\}/Y \\ C_{2} &= 2\beta_{1}\beta'' \exp(\beta_{2}z_{2})/Y \\ D_{2} &= 2\beta_{1}\beta'' \exp(-\beta_{2}z_{2})/Y \\ C_{3} &= 4\beta_{1}\beta_{2} \exp(\beta_{3}z_{2})/Y \\ D_{3} &= 0 \\ C &\subset \mathcal{C}, \\ \beta' &= \beta_{2} + \beta_{3}, \ \beta'' &= \beta_{2} - \beta_{3}, \ \gamma' &= \beta_{1} + \beta_{2}, \ \gamma'' &= \beta_{1} - \beta_{2} \\ Y &= 2(\beta_{2} + \beta_{3})\{\beta_{2} \sinh(\beta_{1}z_{1}) + \beta_{1} \cosh(\beta_{1}z_{1})\}\exp(\beta_{2}(z_{2}-z_{1})) \\ &+ 2(\beta_{2} - \beta_{3})\{-\beta_{2} \sinh(\beta_{1}z_{1}) + \beta_{1} \cosh(\beta_{1}z_{1})\}\exp(\beta_{2}(z_{1}-z_{2})) \end{split}$$

の磁東密度は低下する。

- (2) EMSによって生じるアルミニウム溶湯の流動は、 表面で加熱された溶湯を効率良く炉底部へ輸送し、 アルミニウム塊の溶解を促進する役割を果たす。
- (3) EMS使用時にはアルミニウム塊の溶解時間は短縮 され、その効果はアルミニウム塊の位置によって 異なる。炉底での磁束密度が低下した場合、アル ミニウム塊の初期溶解時間の短縮効果も低下する。

参考文献

- 鈴木宏志: "アルミ溶解炉への電磁攪拌利用,"Al-ある, 10月 号 (1981), 59.
- 2) 星加晴雄、山下隆士: "アルミニウム反射炉用炉底式電磁攪拌 装置," 神鋼電機, 26 (1981), 25.
- 林典史, 犬丸晋, 上原敏彦, 正木克明, 伊藤清文: "アルミニ ウム溶解炉における電磁攪拌,"住友軽金属技報, 26 (1985), 31.
- A. F. Saavedra: "Electromagnetic stirrers- Their Influence on Melter Operation and Dross Generation," Light Metals, TMS, (1993), 739.
- 5) S.Petho: "Experience of ALCOA-KOFEM with MHD Induction Stirrer," Light Metals, TMS, (1996), 857.
- B. Rydholm and O. Sjoden: "Optimized Furnace Design with Electromagnetic Stirring," Aluminum Cast House Technology 2005, Ed. J.A.Talyor, I.F. Bainbridge and J.F. Grandfield, TMS, (2005), 193.
- 7)(社)日本鉄鋼協会・材料電磁プロセッシング研究グループ編: 材料電磁プロセッシング,東北大学出版会,(1999),85.
- M.Dubke, K.H.Tacke, K.H.Spitzer and K.Schwerdtfeger: "Flow Fields in Electromagnetic Stirring of Rectangular Strands with Linear Inductors: Partl. Theory and Experiments with Cold Models," Metal. Trans. B, 19 (1988), 581.
- F. Felten, Y. Fautrelle, Y. Du Terraill and O. Metais: "Numerical Modeling of Electromagnetically-Driven Turbulent Flows Using LES Methods," Fluid Flow Phenomena in Metals Processing, Ed. N-El-Kaddah, TMS, (1999), 571.
- 10) A.Jardy, T.Quatravaux and D.Ablitzer: "The Effect of Electromagnetic Stirring on the Turbulent Flow of Liquid Metal in a Vacuum Arc Remelted Ingot," Multiphase Phenomena and CFD Modeling and Simulation in Materials Processes, Ed. L. Nastac and B. Li, TMS, (2004), 265.

高橋 功一(Koichi Takahashi) 技術研究所

石川 宣仁(Nobuhito Ishikawa) 技術研究所

である。