製品紹介

Products

新型高性能ヒートシンク [Hi シンク®・VL]

New High-Performance Heat Sink, Hi Sink VL

1. はじめに

アルミニウム製のヒートシンクは、電子機器の半導体素子やIGBTなどの冷却用として、多くの電子電気製品に使用されています。また、ハイブリッド車には、モータ制御用インバータの冷却用として搭載されています。

これらの電子機器や自動車用ヒートシンクには, 放熱性能向上と小型軽量化が強く求められています。

そこで当社は、新たなフィン形状を考案し、流体解析と製品の実測評価により、従来のくし型ヒートシンクよりも大幅に軽量で冷却性能の優れた新型高性能ヒートシンク、「Hiシンク・VL」を開発しました。

2. 構造と特徴

「Hi シンク・VL」の概略構造を**図1**に,また主な特徴を次に示します。

2.1 V字型にフィンを配置

従来のくし型ヒートシンクは、冷たい冷却風が流れる 風上側では素子温度を低くできますが、風上のフィンで 暖められた空気が流れる風下側では、素子温度が高く なってしまいます。

しかし、「Hiシンク・VL」では放熱フィンがV字状に配置されているため、風下側のルーバーにも温度上昇していない冷却風を供給することができ、高い冷却性能を得ることができます。

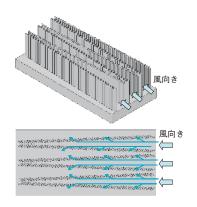


図1 「Hi シンク・VL」の概略構造 Fig.1 Schematic of "Hi Sink VL".

2.2 多数の高性能ルーバーによる高い熱交換効率

流入した冷却風はフィンを構成する多数の高性能ルーバーに分散して流れます。従来のくし型ヒートシンクに 比べて、効率良く熱交換することができるので、高い冷 却性能を実現できます。

2.3 均一な温度分布

上記2.1項,2.2項の特徴から、ヒートシンクのベース 面内の風上側から風下側での温度差を小さくかつ最高温 度を低く抑えることができます。図2に同一条件で解析 したくし型ヒートシンクと「Hiシンク・VL」の、素子取り 付け面の温度分布を示します。

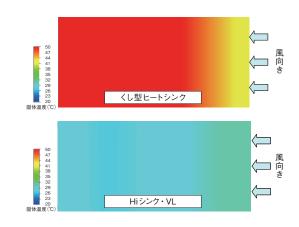


図2 くし型ヒートシンクと「Hi シンク・VL」のベース面温度分布の解析結果

Fig.2 Results of heat distribution simulation of comb shaped heat sink and "Hi Sink VL".

3. 性能

3.1 熱抵抗が1/2

図3に同サイズ(幅140 mm×長さ200 mm×高さ30 mm、フィンピッチ6 mm)のくし型ヒートシンクと「Hiシンク・VL」の熱抵抗(発熱量当りの温度上昇量:低い程冷却性能が優れる)の例を示します。

「Hiシンク・VL」は熱抵抗が非常に小さく、くし型ヒートシンクの約1/2に低減することができます。

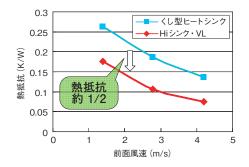
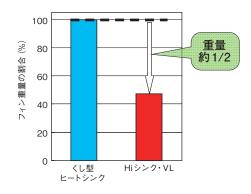



図3 くし型ヒートシンクと「Hiシンク・VL」の熱抵抗 Fig.3 Thermal resistance of comb-shaped heat sink and "Hi Sink VL".

3.2 フィン重量およびサイズが 1/2

図4に従来のくし型ヒートシンクと同等の熱抵抗とし た「Hiシンク・VL」の重量を示します。「Hiシンク・VL」 は、くし型ヒートシンクと比較してフィンを約半分の重 量とすることが可能です。

図5に従来のくし型ヒートシンクと同等の熱抵抗とし た「Hiシンク・VL」のフィン高さの比を示します。「Hiシ ンク・VL」は、くし型ヒートシンクの約半分のフィン高 さとすることが可能です。

くし型ヒートシンクと[Hiシンク・VL]のフィン重量比 Fig.4 Weight comparison between comb-shaped heat sink and "Hi Sink VL".

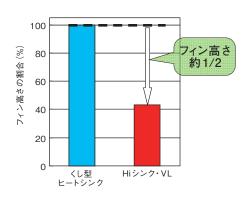
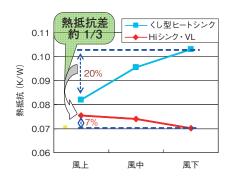



図5 くし型ヒートシンクと「Hiシンク・VL」のフィン高さの比 Fig.5 Size comparison between comb-shaped heat sink and "Hi Sink VL".

3.3 ベース面内温度差の大幅低減

図6に同一条件で解析した従来のくし型ヒートシンク と「Hiシンク・VL」の、ベース面内の熱抵抗を示します。 一般的なくし型ヒートシンクでは、熱抵抗の最大値と最 小値で20%の差が生じてベース面内の温度差が大きい のに対し、「Hiシンク・VL」では熱抵抗の差はその1/3と、 ベース面内の温度差を大幅に小さくすることができま す。

くし型ヒートシンクと[Hi シンク・VL]の熱抵抗分布 Fig.6 Thermal resistance distribution of comb-shaped heat sink and "Hi Sink VL".

4. おわりに

「Hiシンク・VL」は冷却性能に優れるため、製品の小型 化や軽量化が可能です。今後ハイブリッド車など環境対 応車のインバータやコンバータ用冷却器としての展開が 期待されます。

当社では、熱流体解析を活用して冷却製品の最適設計 を行ない、電子電気製品の冷却に関する提案が可能です。 また、各種の風洞設備を用いて、より実際に近い環境に おいての冷却製品の温度評価も可能です。

今後も冷却製品の提案や熱に関係した技術課題の解決 に対応していきます。

お問い合わせ先

押出加工品事業部 加工品部

〒101-8970 東京都千代田区外神田4丁目14番1号 秋葉原UDX12階

TEL: (03) 5295-3554 FAX: (03) 5295-3766