# 技術紹介

# Technologies

放熱・冷却製品開発における解析・評価技術 Analysis and Evaluation Techniques in the Development of Heat Radiation and Cooling Products

# 1. はじめに

近年,ハイブリッド車,電気自動車などの増加により, 新たな車載電子機器が増加している。これらに使われる 放熱・冷却製品は,小型化と軽量化がより強く求められ ることから,当社では,冷却効率を上げた小型・軽量な アルミニウム製放熱・冷却製品の開発を行っている。

今回,空冷ヒートシンク「VLフィン」の開発の進め方 を例に,放熱・冷却製品の開発における熱流体解析技術 を,実験での検証を含めて紹介する。

## 2. 熱流体解析

#### 2.1 VLフィンについて

図1に示すVLフィンは、多数の小さなフィンがルー バー状に並んでおり、そのフィン間を冷却風が流れる構 造となっている。それらのルーバー状のフィンの列が、 ヒートシンク全体ではV字型に並んでいることから、VL フィンと名付けられた。その独特のフィン形状と構造に より、フィンと空気の熱交換の効率を高めると共に、風下 のフィンにも冷たい空気を流すことを特長としている。



## 2.2 2枚フィンモデルの解析

開発にあたっては、まず、図2のように2枚のフィンの 間の流路ひとつ分のモデルについて熱流体解析から検討 を開始した。フィン間隔やフィン板厚などの各パラメー タを変えて計算を行い、フィン近傍からフィン間の中央部 にかけて空気全体の温度が上昇する、すなわち空気全体 に十分熱が伝わる最適な条件を検討した。図3は、フィン からの熱が、フィン間を通り抜ける空気に伝わる様子を熱 流体解析した例である。フィンの出口近傍において、フィ ン間中央部もフィンとほぼ同等の温度となっているのが 分かる。小さなフィン間の風速測定は困難なため、このよ うに熱流体解析により空気の流れや温度を確認した。



図2 2枚フィンモデル Fig.2 Two-fin model.



図3 2枚フィンモデルの熱流体解析結果 Fig.3 Results of CFD thermal analysis of two-fin model.

# 2.3 部分形状モデルの解析

2枚フィンモデルの検討の後、フィン全体の配置を検 討した。図4および図5は、多数のフィンが並んで列を 成している部分モデルの熱流体解析の例で、対称性を考 慮したモデルとしている。図4の速度分布図では、フィ ン間に流入する前では大きな風速が、フィン間では非常 に小さく流れがゆっくりになっていることが分かる。ま た、図5の温度分布図では、風上から入り込んだ位置の フィンにも冷たい空気が流れ込んでいることが分かる。



図4 部分モデルの速度分布図 Fig.4 Flow velocity distribution in partial model.



このような熱流体解析の結果から、風上または風下の 位置によらず冷却性能はほぼ一定で、風上から風下にか けて温度差がつきにくいフィン構造であるといえる。

なお、実際にはフィン形状を決めるフィン角度やV字 角度などの各パラメータを変えて熱流体解析を行い、全 体の流れが最適となるようにフィンを配置している。

#### 3. 熱測定実験

#### 3.1 温度と圧力損失の測定

熱流体解析を用いて設計されたヒートシンクは、実際 に試作して性能の確認をした。

図6は、VLフィンの解析と実測の結果を比較した例 である。熱測定では、ヒートシンクのベース面上にヒー ターを設置して発熱させて、ヒートシンクの前後に接続 したダクトから空気を供給して冷却し、貼り付けた熱電 対によって各部の温度を測定した。図6は、定常状態に おけるベース面上の3ヶ所の温度を測定し、入側空気温 度からの上昇幅を求めたもので、解析と実測はほぼ一致 していることが分かる。

また、この3ヶ所の温度差がクシ形フィンの1/4と非 常に小さいことも確認された。このような特長により, 放熱特性の改善を図ることが可能である。

実験では、同時に風上と風下の2箇所で測定した圧力 の差から圧力損失を求めており、これらも解析とほぼ一 致していることが確認された。



図6 VLフィンの解析と実測の比較

Fig.6 Comparison between analysis and measurement results of VLfin.

## 3.2 温度分布の測定

熱電対の貼り付けができない、あるいは、やりにくい 場所、例えばフィンなどの温度を確認する場合には、赤 外線サーモグラフィによる赤外線画像により温度分布を 確認することがある。図7は、同じ発熱量と風量の条件 における同サイズのVLフィンとクシ形フィンのそれぞ れをフィンの側から見た赤外線画像の例である。測定時 には輻射率を合わせるためにサンプル表面を黒色に塗装 した。この画像によれば、VLフィンの方が温度の均一 性に優れることが分かる。



Fig.7 Infrared image of comb fin and VLfin.

図5 部分モデルの温度分布図

Fig.5 Temperature distribution in partial model.

# 4. おわりに

当社では、このように熱流体解析と熱測定実験を活用 して高性能な放熱・冷却製品の開発を行っており、今後 も、新製品開発を進めるとともに、お客様のニーズにか なうよう設計した最適な放熱・冷却製品の提案を進めて いく考えである。

# お問い合わせ先

押出加工品事業部 加工品部 電子製品部
〒101-8970 東京都千代田区外神田4丁目14番1号
秋葉原UDX 12階
TEL:(03)5295-3554 FAX:(03)5295-3766