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Effect of Second Phase Particles
on the Bendability of an Al—Mg —S1 Alloy

Mineo Asano, Hidetoshi Uchida and Hideo Yoshida

The effect of second phase particles on the bendability of Al—Mg—Si alloy was investigated by

changing solution heat treatment condition and quenching rate. Fast quenching rate made good

bendability, because the number of second phase particles on the grain boundaries decreased. No

crack by bending test was observed with short solution heat treatment time. However, cracks were

observed with long solution heat treatment time. The depth of the crack increased with solution

heat treatment time to maximum value and then decreased. The number of second phase particles

decreased with solution heat treatment time. The formation of shear bands by deformation in-

creased with solution heat treatment time. When shear bands form significantly and many second

phase particles exist, the crack occurs easily along the shear bands and the second phase particles.
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Table1 Chemical composition of specimens (mass %4).

Si Fe Cu Mn | Mg Cr Zn Ti Al

1.02 { 0.15 | Tr. | 0.08 | 0.46 | Tr. | Tr. | 0.04 | Bal.
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Fig.1 Effects of solution heat treatment time and
quenching rate on 0.2% proof stress. The
samples were solution heat treated at 550°C.
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Fig. 2 Effects of solution heat treatment time and
quenching rate on the depth of a crack. The
samples were solution heat treated at550°C.
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Fig. 3 Microstructures of specimen after bending test.
The samples were solution heat treated at 550°C
for 75s.
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Fig.4 Transmission electron micrographs after quenching.
The samples were solution heat treated at 550°C for
75s.
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Fig.5 Effects of quenching rate and solution heat
treatment time on the number of second
phase particles on the grain boundaries.
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Fig. 6 Effects of quenching rate and solution heat
treatment time on the number of second
phase particles.

D, KNENLEL -k ThEEFEL NS, L
ML, EACALERERE 0s~T75s <L TIAK{LALER B
& & SIENES PN L BRI REEHT 5 C
EMTERV, FNESIKEEBERET LELONLHR
F & UTE 2 Mk FofucETEh OBE IS T S
39, z T, ERhoMBE LR T E LT
OB OV THEEIT - 70
BIEFALAIRE RN B O TS TEEANZTT » 7250
OHEHBREORED 5 200um [1F O Wi e B R
HEE Fig. TIOR T, BHLAERRR] 15 TR IRRERG &
A ORI A 5T, EERICLERRE 75s B LT
3600s TRE L WHAMBEOEmEA LN, KB, &

(a) Solution heat treatment time : 15s

0

(b) Solution heat treatment time : 75s

(c) Solution heat treatment time : 3600s

Fig. 7 Microstructures of specimen after bending test.
The samples were quenched in water after solu-
tion heat treatment at 550°C.
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Fig.8 Transmission electron micrographs after 15% strained.
The samples were quenched in water after solution
heat treatment at 550°C.
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Fig. 9 Microstructure of specimen after bending test.

The samples were quenched in water after so-
lution heat treatment at 550°C for 75s.
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Effect of Roll Temperature on Formation of

Refined Grains of Warm Rolled 7475 Based
Aluminum Alloy Sheets

Hiroki Tanaka, Hiroki Esaki, Tadashi Minoda,
Kazuhisa Shibue and Hideo Yoshida

The effect of temperature of the rolls from 2°C to 110°C in the warm roll process at 350°C was in-
vestigated in an attempt to refine the structure of the 7475 based aluminum alloy sheets including
Zr which were heated after each roll pass. It was found that a lower temperature of the rolls led the
alloy sheets to coarser grain structure after solution heat treatment. The {100} <(011> Diagonal
Cube component appeared in the surface layer, which suggested that strong shear bands had been
formed during rolling in the layer. It was thought that these shear bands acted as nucleation sites
for the recrystallized grains in solution heat treatment and contributed to the development of the
coarse grain structure in the surface layer. Regarding the center region of the rolled plates, low
temperature of the roll did not cause sufficient plastic deformation because of the cyclic occurrence
of hardening and softening at the surface layer in the warm rolling process. Consequently, the cen-
ter region also became coarse grain structure after solution heat treatment. On the contrary, in the
case of a higher temperature of the rolls, the subgrain structure less than 3pm was formed uni-
formly through the thickness of the plates after solution heat treatment with the strong Brass tex-

ture component.
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Tablel Chemical composition of specimen (mass%).

Si Fe | Cua | Mn | Mg | Cr | Zn | Ti Zr Al

0.02 | 0.03 | 1.64 <0.01] 2.40 {<C0.01} 5.55 | 0.03 | 0.17 | Bal.

Table 2 Experimental procedure.

Stage Condition

Semicontinuous direct chill tech-

Casting niques into billets of 90 mm in di-
ameter
Homogenization 470°C ~10h
Pre—heating 350°C — 10h
Forging 350°C, 100mm->40mm
Machining 30mm X 100mm X 100mm

Isothermal rolling 350°C, re—heating/pass, l4passes

Annealing 350°C —30min

Solution heat treatment 480°C —b5min W.Q.

Table 3 Roll temperature of each experimental process.

Thickness of plate
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B 20~30°C 20~30°C
C 1 60~80°C
D i 90~110°C
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Fig.1 Temperature changes of the warm rolled sheets with
different thickness after each pass. Roll temperature
at (A) 2—10°C, (B) 20—30°C, (C) 60—80°C and (D)
90~110°C.
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6061 Aluminium Alloy Extrusion”

Tadashi Minoda** and Hideo Yoshida**

The intergranular corrosion (IGC) behavior of 6061 aluminium alloy extrusions was investigated.
After the IGC test in accordance with ISO/DIS 11846 (method B), heavy IGC was observed at the
surface of the extrusion. However, little IGC occurred at the center plane of the extrusion thickness.
It was considered that IGC was caused by the existence of precipitate-free zones (PFZs) because
PTFZs were clearly observed in the surface layer of the extrusion but were not clearly observed in the
center position of the extrusion thickness. Furthermore, it was considered that the formation of
PFZs was associated with the grain boundary characteristics. That is, most of the grain boundaries
had random high angles and connected with each other in the surface layer of the extrusion. On the
other hand, 60 pct of the boundaries were lower than 0.26 rad (15 deg) in the center plane of the
thickness, and the connenctions of the random high-angle boundaries were small over 300-um depth.
To verify this hypothesis, the center plane was cold rolled, recrystallized and examined using the
IGC test. As a result, heavy IGC was observed, while the center plane, in this case, had almost all

random high-angle boundaries.

1. Introduction

The extrusions of the 6061 aluminium alloy
are widely used for structural components be-
cause of their good extrudability and rela-
tively high strength. However, it is well known
that copper addition to Al-Mg-Si alloys re-
duces their resistance to intergranular corro-
sion"? limiting their use in corrosive environ-
ments such as at sea. By the way, the applica-
tion of Al-Mg-Si alloys as automobile body
sheets is increasing, and there are some re-
ports about improvement in intergranular
corrosion resistance of Al-Mg-Si-Cu alloys by
controlling the artificial aging condition or
lowering the corrosion potential by zinc addi-
tion V. For use as body sheets, solution heat
treatments are carried out after cold rolling.
On the other hand, most of the Al-Mg-Si alloy
extrusions are produced by press quenching,
which is a method of combining solution heat

*  This paper is based on one published in Metallurgi-
cal and Materials Transactions A, 33A (2002), 2891.
«+ No. 1 Dept., Research & Development Center,
Dr. of Eng.
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treatment and extrusion®. It is important to
determine the behavior of Al-Mg-Si-Cu alloy
extrusions with regard to intergranular cor-
rosion because their microstructures are dif-
ferent from sheet materials.

In this study, the behavior of the 6061-T6 ex-
trusions with regard to intergranular corro-
sion was investigated and the effect of the
microstructures and grain boundary charac-
teristics on the intergranular corrosion was
discussed.

2. Experimental procedure

The 6061 aluminium alloy billet shown in
Table 1 was prepared by direct chill casting
with a diameter of 250 mm and then homoge-
nized at 550°C. After homogenization, the billet
was heated to 520°C for about 300 seconds us-

Table I Chemical composition of 6061 aluminium alloy
extrusion (mass pet).

Si Fe Cu Mn Mg Cr Zn Ti Al

0.54 023 033 0.03 1.03 006 003 002 Bal
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ing an induction heater and was extruded into
the shape shown in Fig. 1 at a speed of 133mm/s.
The extrusion was then press quenched with
water. Artificial aging was carried out at 175
°C for 8 hours.

The 50 x 60-mm specimens for the inter-
granular corrosion tests were cut from the up-
per part of the extrusions. The intergranular
corrosion tests were carried out in accordance
with ISO/DIS 11846 (method B). The speci-
mens were degreased with acetone and treated
with mixed acid for surface preparation prior
to the corrosion tests. After pretreatment, the
specimens were immersed at room tempera-
ture in an agueous solution containing 3 mass
pet NaCl and 1 vol pet HCL. The corrosion tests
were then carried out for 24 hours as the stan-
dard condition and 96 and 240 hours as the ex-
tended test periods. For the 96- and 240-hour
tests, the solutions were renewed every 24
hours.

To clarify the differences in the inter-
granular corrosion behavior between the sur-
face of the extrusions and the center thick-
ness, the specimen was ground to half-
thickness and polished with a #1200 abrasive
paper, and then the intergranular corrosion
test was carried out for 24 hours. Further-
more, to clarify the effect of solution heat
treatment for long period on IGC behavior, the
specimen was heat treated at 550°C for 100
hours, quenched into water, aged at 175°C for
8 hours, and then the intergranular corrosion
test was carried out for 24 hours.

After the corrosion tests, the specimens
were washed in water and the longitudinal-
short transverse (L-ST) cross sections were

120mm

- >
- \

N

70mm

R

v | (6mm thick)

Fig.1 Geometry of extruded section.
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observed. Furthermore, optical microstruc-
tures of the 1.-ST cross section before the cor-
rosion tests were observed, the Orientation
Distribution Functions (ODFs) were calcu-
lated with the incomplete pole figures (111),
(200), and (220) measured by the X-ray reflec-
tion technique, and the grain boundary
misorientation of the L-LT cross sections were
measured using electron backscattered dif-
fraction (EBSD) equipment with a scanning
electron microscope (SEM). Moreover, the
microstructures around the grain boundaries
were observed using a JEM-200CX transmis-
sion electron microscope (TEM).

To identify the misorientation angle of the
boundaries, which easily exhibit intergranular
corrosion, a polished L-ST cross section of the
extrusion underwent intergranular corrosion
testing. After the test, the specimen was
desmutted with cohcentrated nitric acid,
etched with dilute HF solution, and the grain
boundary misorientation angles were mea-
sured with an SEM with EBSD.

For the purpose of investigating the effect of
decreasing low-angle boundaries on the
intergranular corrosion behavior, two speci-
mens of 6061-T4 extrusion after press quench-
ing were ground to a 3-mm thickness. One
specimen was cold rolled with a reduction of
25 pct and the other was not cold rolled. A so-
lution heat treatment at 520°C for 1 hour fol-
lowed by quenching into water and artificial
aging at 175°C for 8 hours was then carried out
on both specimens. These specimens next un-
derwent intergranular corrosion testing, cal-
culation of the ODFs, and observation of the
optical microscope (OM) and TEM structures.
Moreover, the grain boundary misorientation
angles of the cold-rolled specimen after artifi-
cial aging were measured using the SEM with
EBSD.

3. Results and discussion

3.1 Intergranular corrosion behavior of
the extrusion
Fig. 2 shows the effect of the immersion time
on the intergranular corrosion. Severe inter-
granular corrosion to a 300-um depth occurred
at 24 hours. However, the corrosion depth did
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not increase with time and then the corrosion
propagated into the matrix for a long period.
Fig. 3 shows the results of the intergranular
corrosion test with a specimen that was
ground to half-thickness. Little intergranular
corrosion was observed in Fig. 3. These results
show that the resistance to intergranular cor-
rosion was different in the surface layer and
inside the extrusion; that is, intergranular
corrosion easily occurred in the surface layer,
while it hardly occurred on the inside of the
extrusion. Fig.4 shows the effect of solution
heat treatment for long period on inter-
granular corrosion. Severe intergranular cor-

200pm

Effect of immersed time on IGC. Specimens were
immersed in an aqueous solution for (a) 24h, (b)
96h, and (c) 240h.
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rosion occurred in the surface layer in spite of
longer solution heat treatment time and higher
quenching rate. This result suggests that the
cooling rate during press quenching was suffi-
cient. Fig. 5 shows the microstructures of the
surface layer and the center of the extrusion.
Tt seems that the amount of the precipitates in
the surface layer and in the center of the ex-
trusion is the same. Fig.6 shows the TEM
micrographs and the selected area diffraction
patterns of the precipitates. Both precipitates
were identified as Mg:Si. The amount of Mg:Si
precipitates is almost the same in the surface
layer and in the center of the extrusion, and
then the
intergranular corrosion did not result from
the distribution of the precipitates. Fig.7
shows the TEM micrographs of the specimen.

difference of the resistance to

_200um_
Fig.3 Cross section of a specimen after an IGC test.

The specimen was ground to half-thickness
before the IGC test.

200pm
Cross section of a specimen after an IGC test.
The specimen was solution heat treated at 550°C

for 100h and aged at 175°C for 8h before the IGC
test.
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Precipitate-free zones (PFZs) were clearly ob-
served at most of the grain boundaries in the
surface layer, while they were not clearly ob-
served at most of the grain boundaries in the

Fig.5 OM and TEM structures of a 6061-T6 extrusion:
(a) surface and (b) center of the sample.
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center of the specimen. Table 2 shows the elec-
trode potentials of aluminium alloys”. The
electrode potential of 6061-T4 alloy is the high-
est, that of T6 alloy is the second highest, and
that of pure aluminium is the lowest in these
three alloys. Because PFZs are solute-depleted
zones, the electrode potential of PFZs is lower
than that of the matrix. That is, the matrix
with precipitates is more noble, while the PFZs

211)
320

220}

Fig. 6 TEM structures and the selected area diffraction
patterns of the precipitates: (a) on the grain
boundary and (b) in the matrix. Both precipi-
tates were identified as Mg,Si.

Fig.7 TEM structures of a 6061-T6 extrusion:
(a) surface and (b) center of the sample.
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are less noble in a peak-aged Al-Mg-Si-Cu al-
loy. In addition, the electrode potential of the
Mg:Si particle is higher than that of PFZs". It
is generally said that dissolution of the PFZs
is due to the potential gap between the matrix,
grain boundary precipitates, and PFZs"”. For
the 6061-T6 extrusions, it is considered that
the electrode potentials of the matrix in the
surface layer and the center of the extrusion
are the same because the amount of Mg:Si pre-
cipitates is the same, as shown in Fig. 5. Then,
the difference
granular corrosion is due to the difference in
PFZs. Intergranular corrosion easily occurred
with anodic dissolution of the PFZs in the sur-
face layer, because the PFZs were clearly ob-
served in the surface layer. On the other hand,
intergranular corrosion hardly occurred in
the center layer of the extrusion because the
PFZs were not clearly observed. Fig. 8 shows
the orientation distribution plots of the L-LT
cross sections. The texture results were quite
different. ND- and RD-rotated cube textures
({100} <<011> and {110} <C001>) were observed
at the surface layer, but the intensity was very
low. On the other hand, a cube texture
({100} <001>) was observed in the center
layer, and the intensity was 10lx random.
Fig. 9 shows the optical microstructures of the
L-ST cross sections. The grains show a clear
contrast in the surface layer of the extrusion,
which is not observed at the center of the
specimen. It appears that the recrystallized
grains are present in the surface layer because
shear stress and heat generation caused by
the friction against the die bearing were
greater than those inside the extrusion. Fig. 10
shows the grain boundary misorientation of
the extrusion. Most of the boundaries are
higher than 0.26 rad (15 deg) at the surface,
while 60 pct of the boundaries were lower than
0.26 rad (15 deg) at the center plane of the ex-
trusion.

3.2 Effect of grain boundary characteristics

The PFZs were clearly observed at most of
the grain boundaries and intergranular corro-
sion easily occurred in the surface layer of the
extrusion, while PFZs were not clearly ob-
served at the most of the grain boundaries and
intergranular corrosion did not easily occur

in the resistance to inter-
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Table 2 Electrode potentials of aluminium alloys D,

Alloy Potential, V*
99.95 Al ~0.85
6061 —T6 —0.83
6061— T4 -0.80
#0.1N calomel scale
l’—’@l
® 4
11 (MU T T VIV LT
(AN A
TN A
o i S T g S g
\\/J
==
SNV
AVANIA
A
T Y
1 TN ~
T T N
Ll —~ |
T T
4
(a)
101 8 7 101

IR
N

=
Loo
i -

2N

Z%N
_,V_/\/‘\/—“/

101
(b)

Fig.8 Orientation distribution plots for a 6061-T6
extrusion in ©,=0 deg orientation :
(a) surface and (b) center of the sample.
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inside the extrusion. In addition, most of the
grain boundaries were high angle in the sur-
face layer, while 60 pct of the grain boundaries
were low angle inside the extrusion. By the
way, it was reported that the grain boundary
characteristics affect the nucleation and
growth of the grain boundary precipitates in
the Al-Zn-Mg alloy®. Furthermore, it is known
that the weld decay of austenite stainless steel
is caused by the chromium-depleted zones,
which are caused by grain boundary precipi-
tates of Cr=Cs, and 1t 1s considered that the
grain boundary characteristics affect the for-
mation of the chromium-depleted zones. It was
reported that the width of the chromium-
depleted zones was smaller in coherent
boundaries such as low-angle boundaries and
coincidence cite lattice (CSL) boundaries,
while it was greater in random boundaries ®.
In general, it is said that the grain boundary
energy is lower at coherent boundaries, while
it is higher at incoherent boundaries®. Thus, it
is considered that the amount of grain bound-
ary precipitates changes with the difference in
the grain boundary energy. It is suggested

®@

200um

Fig. 9 Optical microstructure of L-ST cross section:
(a) surface and (b) center of the sample.
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that grain boundary precipitates and PFZs
easily form along random high-angle bounda-
ries, while they hardly form along low-angle
boundaries in 6061 extrusions as well as in
stainless steel.

Fig. 11 shows the optical microstructure of
the L-ST cross section after the intergranular
corrosion test and the angles of the corroded
boundaries. In addition, Fig.12 shows the
misorientation angle distribution of the grain
boundaries in which intergranular corrosion
occurred. The angles of all the boundaries are
greater than 0.26 rad (15 deg), so the bounda-
ries below 0.26 rad (15 deg) have a resistance
to intergranular corrosion. Fig. 13 shows the
TEM structure of the grain boundaries and
the Kikuchi lines from the grains. The
misorientation angle is 0.40 rad in Fig. 13 (a),
while is 0.05 rad in Fig. 13 (b). Actually, it be-

Frequency (%)
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Misorientation Angle. 6 / rad
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<
&
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0 /18 2n/18 3w/18 4n/18 5nw/18 6m/18
Misorientation Angle, 6 / rad
(b)
Fig. 10 Grain boundary misorientation angle distribu-

tions: (a) surface and (b) center of the sample.
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25um
Fig. 1l Optical microstructure of the L-ST cross section
after an IGC test. The numbers in this figure
show the misorientation angle of the corroded
boundaries (rad).
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Number of Boundaries

0 /18 2r/18 3n/18 4m/18 5m/18 6m/18

Misorientation Angle, 8 / rad

Fig. 12 Misorientation angle distribution of the grain
boundaries in which intergranular corrosion
occurred.

came clear that the misorientation of the grain
boundary that did not show PFZ clearly had
low angle. By the way, CSL boundaries also
have a lower energy, like the low-angle
boundaries. Especially, the lower ¥ boundary
has a lower energy; therefore, it is considered
that intergranular corrosion does not easily
occur in these boundaries. Actually, a previous
study showed that the X3 boundaries have a
resistance to stress corrosion cracking in
austenitic alloys ¥. Table3 shows the grain
boundary characteristics and their rate in the
surface layer and in the center of the specimen
measured by EBSD. The rate of the X 3
boundaries is only 1.4 pct in the surface layer

20

2 3

Misorientation angle is 0.40 rad

1 2
Misorientation angle is 0.05 rad

Fig.13 TEM structures of the grain boundaries and the
Kikuchi lines from the grains: (a) PFZ is ob-
served clearly and (b) PFZ is not observed
clearly.

Table 3 Grain boundary characteristics and their ratios
measured by EBSD.

Type of boundary Surface layer Center
Low angle” 18.3 pet 59.8 pet
23 1.4 pet 0 pet
Y511 3.1 pet 2.7 pet
Random 71.2 pet 37.5 pet

* Below 0.26 rad
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and 0 pct in the center. Moreover, the X 5-11
boundaries are only 3.1 pct in the surface
layer and 2.7 pet in the center of the extrusion.
Because the effect of CSL boundaries is very
small, only low-angle boundaries can be taken
into account in this study.

Fig. 14 shows the distribution of high-angle
boundaries (C>0.26 rad) in the surface layer.
Most of the high-angle boundaries connect
with each other within 300-pm depth from the
surface, while their connections are small over
300-pm depth. Then, it is considered that
intergranular corrosion propagates easily in
the surface layer because of the large connec-
tion of high-angle boundaries; however, it
does not propagate more than 300-um depth
because of the small connection of high-angle
boundaries.

3.3 Intergranular corrosion behavior of

recrystallized sample

It became clear that intergranular corrosion
did not easily occur due to the amount of low-
angle boundaries; therefore, it is suggested
that intergranular corrosion will easily occur
even at the center of the sample where most of
the grain boundaries have random high an-
gles. Fig. 15 shows the optical microstructures
of the 6061 extrusion after grinding to half-
thickness, polishing, cold rolling, solution heat
treatment, and artificial aging. For the speci-

100um

Fig.14 L-ST cross section in the surface layer of the ex-
trusion. The lines show the high-angle bounda-
ries with more than 0.26 rad.
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men without cold rolling in Fig.15 (b), the
grains still show an indistinct contrast. How-
ever, for the cold-rolled specimen in Fig. 15
(a), the grains show a clear contrast. Fig. 16
shows the results of the intergranular corro-
sion tests. Intergranular corrosion was only
slightly observed in the specimen without cold
rolling, while heavy intergranular corrosion
was observed in the cold-rolled specimen. The
orientation distribution plots of the specimens
are shown in Fig.17. Cube and rotated cube
textures were observed in the specimen with-
out cold rolling in Fig. 17 (b). It is considered
that the press-quenched specimen showed
strong cube texture in the center of the sam-
ple, as shown in Fig.8 (b), because the time
between the extrusion and quenching was so
short that the specimen was quenched during
recrystallization. Therefore, the rotation of
grains from the cube texture occurred during
the solution heat treatment. The random high-
angle boundaries then increased and inter-
granular corrosion easily occurred. On the

200um
Fig.15 Effect of the reduction of cold rolling on the
recrystallized grains after cold rolling, solu-
tion heat treatment, and artificial aging. The

reductions in cold rolling were (a) 30 pct and
(b) 0 pet.
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200um

Fig.16 Cross section of recrystallized specimens after
the IGC test. The reductions in cold rolling be-
fore solution heat treatment were (a) 30 pct and
() 0 pet.

other hand, the grains were randomly oriented
in the cold-rolled specimen. Fig. 18 shows the
TEM micrographs. The PFZs were not clearly
observed in the specimen without cold rolling
in Fig. 18 (b), while they were clearly observed
in the cold-rolled specimen in Fig. 18 (a). Fig.
19 shows the grain boundary misorientation
angle distribution of the cold-rolled specimen
after artificial aging. Most of the boundaries
were higher than 0.26 rad (15 deg). Therefore,
it became clear that the grain boundary char-
acteristics affect the formation of the PFZs in
the 6061 extrusions.

4. Conclusions

(1) The intergranular corrosion test of the
6061-T6 extrusion indicated that severe
intergranular corrosion to a 300-um depth oc-
curred at 24 hours. However, the corrosion
depth did not increase with time and then the
corrosion propagated into the matrix for a
long period.
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Fig. 17 Orientation distribution plots for the recrystal-
lized specimens in ©y=0 deg orientation. The re-
ductions in cold rolling before solution heat treat-
ment were (a) 30 pet and (b) 0 pect.

(2) The PFZs were clearly observed at the
surface layer, while they were not clearly ob-
served in the center of the sample. It is appar-
ent that the dissolution of the PFZs occurs
during the intergranular corrosion test be-
cause of the potential gap between the matrix,
grain boundary precipitates, and PFZs.
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0.2um
Fig.18 TEM structures of recrystallized specimens.
The reductions in cold rolling before solution
heat treatment were (a) 80 pct and (b) 0 pet.
8¢
6

T T

Frequency (%)
I

T

0 w18 2n/18 3n/18 4w/18 5m/18 6m/18

Misorientation Angle. 8 / rad

Fig.19 Grain boundary misorientation angle distribu-
tion of the cold-rolled and recrystallized speci-
men after artificial aging.

(3) Most of the boundaries were higher than
0.26 rad (15 deg) in the surface layer, while 60
pct of the grain boundaries were lower than
0.26 rad (15 deg) in the inside of the extrusion.

(4) Tt was concluded that the PFZs accelerate
intergranular corrosion, and the grain bound-
ary characteristics affect the formation of the

23

grain boundary precipitates and PFZs.
Intergranular corrosion easily occurs at a
random high-angle boundary, where grain
boundary precipitates and PFZs easily form,
while intergranular corrosion does not easily
occur at the low-angle boundaries, where
grain boundary precipitates and PIZs are
rare.
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Effects of Manganese Contents in Solid Solution
and Microstructures on Creep Behavior of
3003 Aluminum Alloy Extrusions

Hidenori Hatta, Shinichi Matsuda and Hideo Yoshida

The creep behavior of AA3008 alloy extrusions with various manganese contents in solid solution
and different microstructures was investigated. Yield stress decreased with heat treatment time at
400°C both fibrous and recrystallized structures. These microstructures did not change during an-
nealing. Specimen with high manganese contents in solid solution showed higher creep strength than
that with low manganese contents even if yield stress were same at 200°C. Further, in the same
manganese contents in solid solution, the specimen with the fibrous structure showed higher creep

strength than the recrystallized one due to subgrain structures.
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Table 1 Chemical compositions of alloy 3003 (mass%).

alloy Mn Fe Si Cu Al

3003 1.19 0.47 0.13 0.17 Bal.




Vol.43 No.l

3003 &&HEMO 7 V) — 7RI RIES w v 4 v ORE - THB LU 7 oo E 25

TEHK, BWEMEL LH 503 630°C T 10 K[
DFEFFE KIS OB LB E Lic, £, @FED
Al—Mn &40 HIE, 400~550CTians &
ML VN, 7 oillBEsET 32BN, FHEE:
450°CH £ U8 300°CD 255tk & Lo
BohnfEMicovwT, v vy VYERER L UHE
OFEED 12 400°C T 0~64h OBMIR AT - 72 (RIF,
H v S, S - AR TR, KAEe
KB HEBEBRI< MY vy APO v VEEBREH
Bhd 2 EBHIONTVWAT EhD, vV VEERE
R 3 HET, WBEBREC X DEEREWEL 7,
T, ERpBERBRB LU ) - FEBRE, #EMOR
BRETONHBSH 2 RES R I DI, o,
200°C T 100h B L 23 B 2 HV T, 200CTHR %
Totoe B, FIREEER IZETHE Tom, FITHE
= S0mm, EARAREEE 25mm & L, #IH0TAEE 1.0
x107/s TREBwcH Ui, £, 71— 7R EET
X 6mm, AR 30mm OEERF & L, RS
7 o R T A, e, 2 ) - 7TEEBRR
DEF MBS BRI TT » o,

£

3.1 WEBE

Fig. 1 1o 8 & MULBBR R OBIR AR T o FHH & &
T, C—Oh M OB A—0h# & B—0h #1 & 0 &

Table 2 Homogenizing and extruding conditions.

Homogenizing Extruding conditions
Sample .
conditions Temperature (°C) | Diameter of rod (mm)
A 630°C —10h (WQ) 450
B 630°C —10h (WQ) 300 ¢ 20
C non (as cast) 450
WQ : water quenching
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Fig.1 Change in electrical conductivity during
heat treatment at 400°C.

25

WEERT T EH DS, A—0h#EB LT B~0h #ic ks,
C—O0h#Mo~ I vEEENEZL LD LS NS, D
Fio, vV A voBEREEEET2HMAT, 4000CTH
MIRAT - 72, STEEHO Y v 7 d b, OB AE
WHEBEBRNEKELHE, Chidew by vy 7 20N
v 55 AleMn, AlMnSi 38 & O AlMnFeSi & L THH L
kbDEHLNBM, TOK HHEZZOKRETKGE
BEOFECHIE, AMBLUBMELD bEEROH
MBAEKZV, TOI &, CHOv vy vORHEE
B, AMBLIUBMEIDEVWIEERBLTV S, &
7o, AREBPORRE ORISR TH 5 64h OEFILETT D
TEicky, EEc v A vRELRHL, BEESER
& %,

3.2 =4 oA

B s 7 ofifg# Fig. 21077 A—Oh#4id, #9 90um
DR EAETAEEREB T DIH L, B—0h
MBLU C—0h MRIBHREBE T >TVWE, COFH
FERMHES L R ABOER I LT INE T
W o OEEMRLINTEBY, FHAMRT LR
OB EET L VbR TW3EY, Zo/shi
v 7 400°C T 64h BULEE L T d, AWM IIFEREM
%, BHE CHREHHIKEE T O KERELEZRD S
NI,

C 3.3 TuU—TikH

g —7EMIRIET L 7 oo EETEET S C
EEHEPE L, 400°CT 64h DB ATV, < v A v
LAY, BEREEER -, TELLEIREESE
BIERE—&E Ly vy uicowT s ) -7 HEBET- 7
ERE Fig 3 IRT, A—64h M TR N L BEREFD
BEIG/ITH B SRRl ED, B—64h#fT
37N & D TSR < F9 30h T, BB L O
C—6dh M iz X SIc BV Bh I THIcE S, Tbb,
BEFNCEB L= v A v AL s E, =) w7
2w v VEBES ZIEE—C Lge, SRR
o C—64h #45 XL UF B—64h M8, HEREEMEBO A~
Gdh ¥ L b 7 ) — BN E TOREFLE L,

oI, HHEAEREE T A BHMBLUCHERAL
T, 7 ) —FERcRET N OB - T o
EPEE L, Fig. 4 KE—ME<T, EERPRELS Y
IAD s —THRERT, BERO/NE VB8
i, BBEROKEWL C—64hPickixlL T, 20 2L
o R 135 T 5, COERE, [
—REORM T, LOoBHEREBE S LTh-Th,
vH v OEBESRKEWED, 2000CTO 7 Y — i
KEABEBEWIEEREL TV S,

4. &
4.1 IV OHBORE
Fig. 5 i< 200°CE5iR 5 | 3RF1E: 2R 97 400°C X 64h AL

=



26

2002

Fig. 2 Effects of manufacturing conditions on microstructures before and after heat treatment at 400°C.
(a) A—0h (b) B~0h (c) C—~0h (d) A—64h (e) B—64h (f) C—64h.
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200°C 1 A-64h

Elongation(%)

Time(h)
Fig. 3 Creep curves of specimens heat treated at 400°C for

64h, which had same electrical conductivities but
different microstructures.
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Elongation(%)
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Time(h)

Fig.4 Creep curves of specimens, which had same yield
stress but different electrical conductivities. The
microstructures of both specimens were fibrous.
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extrusion heat treated at 400°C for 64h.
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Fig. 7 Transmission electron micrographs of specimens after creep tests. (a)(c) B—8h (b)(d) C—64h.
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Fig.8 Minimum creep rate dependence on applied stress

at 200°C.
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Effect of Intermetallic Compounds on
Corrugation Wave of Double Rolled Commercial
Purity Aluminium Foils

Tetsuya Motoi and Kiyoshi Fukuoka

For the production of double rolled foils in aluminium alloy, it is important to obtain fine mat

surface. Because pin holes on the thin foil formed by connection corrugation wave on mat surface

and oil pits on bright surface. We have investigated that size and morphology of intermetallic com-

pounds, linking with pin hole numbers. As results, it become clear that spherical AlFeSi compounds

increased non-flattening mat surface than plate AlFe compounds. The spherical AlFeSi compounds

and the pin hole numbers in the foil were decreased by increasing Fe/Si ratio or homogenization an-

nealing at higher temperature. These facts suggest that pin hole formation on the fine mat surface

is more difficult than on the rough mat surface with spherical AlFeSi compounds.
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Fig.1 SEM observations of the cross section for double
rolled foils.
(A) Spherical compound in IN30,
(B) Plate like compounds in 1N30,
(C), (D) Plate like compounds in 8021

Table 1 Chemical compositions and homogenize

conditions of specimens.

Chemical compositions (mass?) | Homogenization
Alloy
Si Fe  |Fe/Si ratio ()

Commercial 0.12 0.44 3.7

Commercial 0.05 1.34 26.8

Laboratory A 0.12 0.44 3.7 778, 813, 873

Laboratory B 0.08 0.44 5.5 773, 813, 873

Laboratory C 0.08 0.61 7.6 773, 813, 873

Laboratory D 0.08 0.84 10.5 773, 813, 873
Commercial IN30 (A")| 0.12 0.44 3.7 813
Commercial IN30 (B')] 0.07 0.45 6.4 813, 853
Commercial IN30 (C')| 0.07 0.56 8.0 813, 853
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Fig. 2 Relationship between the size of intermetallic
compounds and the corrugation wave height
of commercial 1IN30 foil. (OA : plate like
compounds, @A : spherical compounds, O
@® : corrugation wave of Aside, AMA : cor-
rugation wave of Bside)
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Fig.3 Relationship between the size of intermetallic
compounds and the corrugation wave height
of commercial 8021 foil. (OA plate like
compounds, O : corrugation wave of Aside,
A : corrugation wave of Bside)
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nol method.
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Fig.7 The ratio of depth of oil pit formed on the bright
surface of commercial IN30 foil.
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Fig. 12 Schematic model for the formation of pin hole caused
by intermetallic compounds. (A) Before double roll-
ing, (B) During double rolling (formation of corru-
gation wave), (C) During double rolling (local tear)
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during Early Stage of DC Etching”
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and Kiyoshi Fukuoka™**

This paper, aimed to clarify the pit nucleation mechanisms and to establish the fundamentals of

etching technology, describes the results of an investigation of the behavior of the anodic dissolu-

tion of high-purity aluminum foils for electrolytic capacitors based on electrochemical analyses and

surface electron microscopic observations of the etched surfaces. To elucidate the pit nucleation
mechanism, the effects of lead on the etching behavior were investigated during DC etching. Pits
changed their shapes from hemispherical to half-cubic during the early stage of DC etching.

Hemispherical pits were formed and then grew under the diffusion control of aluminum ions in the

electrolyte bulk during the high potential period. Pits with facets grew under the steady-state po-

tential.

1. Introduction

The capacitance of aluminum foils used in
electrolytic capacitors is determined by their
surface area after the etching. The methods of
etching are selected according to the working
voltages. DC etchings are usually adopted for
the anode foils of high and low voltage capaci-
tors. High-purity aluminum foils with high
cubicity are generally used for DC etching be-
cause of the selective dissolution of the (100)
faces. The initial pits continue to grow and
then form tunnels®. The morphologies of the
tunnel pits are affected by the segregation of
trace elements in the surface layer caused by
the heat-treatment.

It is important for determining the etching
mechanism to investigate the nucleation proc-
esses of pit formation. In-situ observations of
pitting attacks in a NaCl solution have been
studied by potentiostatic electrolysisV ¥,
Many studies have also discussed the growth
of pits using high-purity aluminum foils dur-

* The main part of this paper was presented at
Corrosion Science, 42 (2000), 585.

+**  No.4 Department, Research & Development Center,
Dr. of Eng.

#++ Hydro Aluminium Japan KK (formerly No.4 De-
partment, Research & Development Center)

ing DC etching in hot HCI solutions with re-
spect to the effect of electrolytic conditions on
the pit shape”, the morphology of the early
stages of the pitting corrosion®, the tunnel pit
growth rate” Pand the effect of impurities on
the DC etching behavior®'. The principal
purpose of the present work was to observe
the morphologies of pit nucleation and to
study the relation between changes in the elec-
trode potential during the early stage of DC
etching and pit structures.

2. Experimental method

Three kinds of high-purity (>99.99%) alu-
minum foils with different lead contents® as
shown in Table 1 were used for the DC etching.
The thickness was 104pm, and the cubicity was
above 95%. All specimens were annealed at 560
°C in an Ar gas atmosphere for 5h. The speci-
mens were galvanostatically etched up to 50ms

Table1l Chemical compositions of specimens (ppm).

Specimen | Si Fe Cu Mn Mg Cr Zn Ga Ti Pb Al(%)

A 5 6 44 <1 <1 <1 <1<1<101 9999
B 8 8 43 <1 <1 <t <1 <1 <105 9.9

C 8 9 43 <1 <1 <1 <1 <1<l 08 99.99
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in 1.5~7.6M HCI solutions at 70°C.

A constant current density of 200mAcm ~°
was supplied by a potentio/galvanostat (HA-
501G, Hokuto Denko). The potential changes
were measured by a digital oscilloscope
(R9211B, Advantest). The morphology of the
etched specimens was studied by observations
of resin replicas (PETROPOXY 154, Palouse
Petro Products)'V in a scanning electron mi-
croscope (S800 FE-SEM, Hitachi). A transmis-
sion electron microscope (JEM-200CX, JEOL)
was used to observe the pit structures of the
films which were stripped from the etched foil
in I. methanol solution'”. The same electro-
chemical cell was used for both DC etching
and anodic polarization. A counter electrode
was Pt, and a Calomel reference electrode was
connected to the cell by a capillary. Specimens
were anodically polarized at a sweep rate of
50mVmin~' in 0.1~7.6M HCI solution at 70°C.
The surface area of an aluminum foil exposed
to the electrolyte was lem’. The rest of speci-
men was masked with polyester tape. After
being immersed in the electrolyte for 30s, the
specimens were etched or polarized.

3. Experimental results

3.1 Changes in electrode potential and pit
nucleation behavior during the early
stage of DC etching

Changes in the electrode potential of the ini-

tial DC etching are shown in Fig.1. The elec-
trode potential during DC etching is initially
high and then becomes steady with a transi-
tion period of up to a few ms.

o 0O T T
s} 3.0mol drrl\-3
N -400 !
] 1.6mol dm-3
>
> -800 —y N
E L
§-1200 7.6mol dm=3
[
[1)]
5-1600
(s

-2000

~2ms—  Time

Fig.1 Changes in electrode potentials for specimens
A~C during the early stage of DC etching at a
current density of 200mAcm 2 in 1.5M HCl solu-
tion at 70°C.

36

Scanning electron micrographs of the resin
replicas obtained from specimen C after the
initial DC etching up to 10ms are shown in Fig.
2. Pits varied in structure from a hemispheri-
cal pit to a half-cubic pit with a cluster of
hemispherical pits. Pits with crystallographic
dissolution of (100) faces and facets are ob-
served after a 10ms DC etching. Other mor-
are shown in Fig.3. Clusters
consisting of multiple pits are observed after
5ms in Figs.2 (d) and 3 (a). The rest of the
faces with dissolutions,
which are considered (111) faces, are observed
at the tip of the pit in Fig. 3 (b). Thus, selective
dissolution of the (100) faces is initiated in the

phologies

crystallographic

Fig.2 Scanning electron micrographs of resin replicas
obtained from specimen C etched at a current
density of 200mAcm % in 1.5M HCI solution at 70°C
for (a), () 2ms, (¢), (d) 5ms, (e), (f) Tms and (g), (h)
10ms. Stage tilts for all specimens are 45° except for
h) of 0° .

0.5um

Fig.3 Scanning electron micrographs of resin replicas
showing crystallographic dissolutions of (100)
faces, etched at a current density of 200mAcm ~*
in 1.5M HCI solution at 70°C for (a) 5ms with speci-
men B and (b) 15ms with specimen A.
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hemispherical pit grown by the nucleation
process.

Transmission electron micrographs of the
pit structure of specimen A after a 50ms DC
etching are shown in Fig.4. Films are ob-

0.5um

Fig.4 Transmission electron micrographs of a film re-
moved from specimen A etched at a current den-
sity of 200mAcm™? in 1.5M HCI solution at 70°C for
50ms. Stage tilts for (a) and (b) are 0° and 45°, re-
spectively.

served on the side walls and on part of the tip
of the half-cubic pit. Judging from the result
after observation of the films, it is realized
that the side walls are passive, and that tun-
nels grow due to the dissolution at the tips of
the pits®.

The distribution of pits after a 50ms etching
is shown in Fig.5. The average pit sizes indi-
cating widths and lengths of the half-cubic pits
and pit densities over a 4000pm’® area were
measured using scanning electron micro-
graphs for each specimen. The frequencies of
pit sizes are shown in Fig. 6. The products NS
given by the pit densities N and average pit
areas S are 2.0X107*~2.6 X107* as shown in
Table 2. The current densities per one pit cal-
culated by I/NS are 7.7~10.0Acm™?, where I is

5um

Fig.5 Scanning electron micrographs of resin replicas showing pit distributions of (a) specimen A, (b) specimen B and
(¢) specimen C etched at a current density of 200mAcm™2in 1.5M HCI solution at 70°C for 50ms. Stage tilts for all speci-

mens are 45°.

60 60 60 o——
50 F S0k 50}
840 - 340 - — 240 }
> > S
230} 230} 30}
(1] [} @
- = =]
520 - 520 - g20}
L i i
10 10F 10F
0= — 0k~ T 0% T
0 06 12 18 24 3.0 0 06 12 18 24 3.0 0 06 1.2 18 24 30
Pit size (um) Pit size (um) Pit size (um)
(@ (b) (c)

Fig. 6 Frequency distributions of pit sizes based on scanning electron micrographs of 4000pm? for (a) specimen A,
(b) specimen B and (¢) specimen C etched at a current density of 200m Acm™2 in 1.56M HCI solution at 70°C for 50ms.
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the applied current density. On the other hand,
the pit growth rates dl/dt were measured by
triangle waves of 2Hz at 200360mAcm™?, then
the current densities per one pit i« calculated
by (dl/dt) (zpF/M) were 8.1~9.8Acm™*". The
values calculated by I/NS agreed with is, indi-
cating that aluminum dissolves at the tips of
the pits. '

The length, width and depth of 10 individual
pits with facets were measured for each speci-
men. Since facet dissolution indicates an
etched structure with tunnels along <100>> di-
rections, the selected pits are substantially re-
garded as the initial tunnel pits. Examples of
the pit structures are given in Fig. 7. The aver-
age ratios of (length) : (width) : (depth) were

Table 2 Average pit sizes and densities measured with scan-
ning electron micrographs over 4000um? for (a) speci-
men A, (b) specimen B and (c) specimen C etched at
a current density of 200m Acm ™2 in 1.5M HCI solution
at 70°C for 50ms.

Specimen A B C
Average pit
verage p 0.9 0.8 0.5
size : w(um)
Pit density :
_‘2 Y 1.8x10¢ 3.3%x10° 6.5% 10
After | N(em™)
50ms | Average pit
gep 1.1x1078 0.8x1078 0.3%x107®
area : S(em?)
NS 2.0X1072 2.6X1072 2.0X1072
Pit growth rate : 3.4 2.8 3.0

dl/dt (um s™)  (ig=9.8Acm ) (3= 8.1Acm™H)|(iy= 8.7TAem™?)

1:0.86 : 0.45 (specimen A), 1:0.95 : 0.45 (speci-
men B), and 1:0.95:0.50 (specimen C). As
they are regarded as 1:1:0.5 in general, the
shapes of initial tunnel pits are half-cubic®.
The growth rate of the hemispherical pit is

given as™ :

dr/dt= (i;M)/(zoF) = (DCsM)/(por) €h)

Since the shapes of the initial tunnel pits are
half-cubic, the radius of pit r is given as w/2,
and the integrated equation is

w/2=y(2DCMt)/p )

where Cs : concentration of saturated AICls in
electrolyte (molcm™)

D : diffusivity of AI** in electrolyte (cm’s™)

i : limiting current density at the mouth of
a hemispherical pit (Acm™)

: radius of hemispherical pit (cm)

: Faradaic charge

: chemical electric charge of aluminum

: atomic weight of aluminum

: density of aluminum (gem™)

. etch time (s)

T 2N S

When Cs=2.6X10"*molem™, D=6.0X10"%cm?
s ' and when w indicates the average pit
sizes given in Table 2, then the periods of pit
formation are calculated as shown in Table 3.
Thus, the formation of a pit requires a long
period with the increasing size of pit w when

0.5um

Fig.7 Scanning electron micrographs of resin replicas showing pit structures of (a) specimen A, (b) specimen B and
(c) specimen C etched at a current density of 200mAcm™? in 1.5M HC} solution at 70°C for 50ms.
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the diffusion of AP* in the electrolyte is the
rate determining step. Fig. 8 shows Cs plotted
by using the value of concentration of satu-
rated AlCls in various HCI concentrations from
references® ¥, while the temperature depend-
ence of the solubility was ignored. High poten-
tial periods almost agree with the calculated
values.

3.2 Relation between pitting potential and
steady-state potential during early
stage of DC etching

Anodic polarization curves of specimen A in

various HCI concentrations are shown in Fig.9.
For all specimens (A~C), a good correlation
between log [Cl™] and the pitting potential®® is
shown in Fig. 10. Pitting potentials (E..) are
given as:

Specimen A : E..= —0.901—0.162log [Cl7]
Specimen B : E;=—0.932—0.181log [Cl”]
Specimen C : Ex=—0.942—0.190log [Cl]

The morphology of an aluminum surface

Table 3 Comparison of high potential period and calculated

value.
Specimen A B C
High potential period (ms) 5.0 4.0 3.0
Calculated value (ms) 6.5 5.1 2.0

Cg (X 10"3mol cm‘3)

]
0 3 6 9 12 15
HCI concentration (X 10-3mol cm™3)

Fig.8 Concentration of saturated aluminum chloride
Cg in hydrochloric acid [6,15].

after the anodic polarization (current density
; 0.1Acm™® is shown in the scanning electron
micrographs of Fig.11. Crystallographic
dissolutions are randomly formed at low Cl~
concentrations. Tunnel dissolutions growing
along the <100>> directions parallel to the
original surface are clearly found with the in-
creasing Cl™ concentration. The surface disso-
lution area is larger on specimen C than on
specimen A.

Fig. 12 shows the effect of various HCI con-
centrations on the change in the electrode po-
tential for specimen A. As shown in Fig. 13, the
steady-state potential shifts to a less noble
value with the increasing Cl~ concentration
similar to the pitting potential.

The limiting current density at the mouth of
a hemispherical pit, i, is given as' :

i,=3FDCg/r=3Fy(DCg0)/(2Mt) (3

-600 LI R B I N D M S 01011 M B R 111 B R A A
o [CI]=0.1mol dm-3 s
O =700 PR -
(7] T /.
¢ -800 1 ~—<0.3mol dm3 7, .
- / 1.0mol dm3 __~ ;
£ -900 J LTS
- / / - Tsmoldm3 7
-,g-woo 4T T8 0mol dm3 A
Y /// _ 7
S-100="4"_ _ _ -~ =~ rell -
a == - ~7.6mol dm-3

-1200 sl ol el 0 gl s 00l

10-1 1 10 102 103 104

Current density (mA cm-2)

Fig.9 Anodic polarization curves of specimen A in
0.1~7.6moldm™3 HCI solutions at 70°C with

sweep rate of 50m Vmin ™!,

-700 1 U i LR
m
Q
% _8o0 ]
0
>
> =
E -900}
8
8-1000 |-
e OSpecimen A
o ASpecimen B N
§'1 100 pgpecimen € RN
£
-1200 ; [T N ] I A
10-1 1 10

[CI"] concentration (moldm-3)

Fig.10 Relation between Cl™ concentration and pitting
potential.
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The average current density for all the side
walls of the half-cubic pit, iw, is given as :

i,=i,/3=Fy(DCg0)/(2Mt) @

20um

Fig. 11 Scanning electron micrographs of surfaces after
anodic polarization at a current density of
0.1Aem™21in (), (b) 0.1M and (c), (d) 7.6M HCI so-
lutions at 70°C with sweep rate of 50m Vmin~! show-
ing changes in structures from clusters of

crystallographic dissolutions to tunnel dissolutions

with increasing Cl™ concentration in the bulk electro-

lytes. (a), (¢) and (b), (d) are specimens A and C, re-

spectively.

® ™ Tign potential
O i otentia
8 400 pe?‘iog
3 Steady-state
> _800 —~\B potential period
E Q C\ | W ¥ T
=-1200
8
-1600
[o]
[

-2000
T2MST1 Time

Fig.12 Changes in electrode potentials of 3.0~7.6
moldm™® HCl solutions at 70°C for specimen A
during the early stage of DC etching at a cur-

~2

rent density of 200m Acm

because a half-cubic pit consists of four half-
square side walls and one square bottom face.
If the Cl- concentration in the bulk solution
and the half-cubic pit are taken as C°a and Ca,
respectively, assuming the H* concentration in
the pit, Cx =0 because of the uncertainty for
the hydrolysis of AICL, then

Co-=(AXC+2C° -)/(1+1/2) )

with the requirement to be electrically neutral'”,
where

AXC=(2i,1r)/(zFD) = (i,w)/(zFD) 6)

and A X Cis the difference in the total ion con-
centration between the pit and the bulk solu-
tion (ZCi— ZC°).

Concerning the concentration of Cl™ in a pit
during DC etching, Table4 shows the calcu-
lated value of Ca using equations (4)~(6)
when the time during high potential is taken as
t, and Cs is from Fig. 8. Hence the dashed line
in Fig. 13 is obtained. If the effect of the LR.
drop on the potential is considered, the dashed
line will more closely approach the solid line.

-400 1 T 1 LR LA l L t T ETETT ]
B High potential |
&5
& -600 -
o B |
>
?E -800 Steady-state potential
8 i
|5
5 1000}  pitting potential N ]
o i o |
~1200 1 el ! Ll
10-1 1 10 20

[CI"] concentration (mol dm-3)

Fig.13 Relation between Cl™ concentration and electrode
potential.

Table 4 The calculated value of Cey .

HCI concentration | High potential | Cs [Fig.8] r [Eq.2] ir, [Eq.3] iy [(Eq.4] AYC [Eq.6] Ca [Eq.5]
an period (ms) (molem™%) (em) (Aem™® (Aem™?) (molem™®) (moldm™®)
1.5 5.0 2.6x107° 4.0x107° 114 38 1.7%1073 3.6
3.0 4.9 2.0x1073 3.4X107° 101 34 1.3%107? 5.5
7.6 3.3 0.7x107% L7x107° 73 24 0.5x1073 11.8

40
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4. Discussion

The potential peak, which was observed dur-
ing the early stage of DC etching, was more
noble than the steady-state potential. The for-
mation of a salt film has been discussed. It
was found that a continuous aluminum chlo-
ride film was formed at high anodic poten-
tials’®. The formation of a salt film is
accompanied by the concentration of Cl™ and
the diffusion of Al**. On the other hand, hemi-
spherical and crystallographic dissolutions
were confirmed at high potentials and at the
pitting potential, respectively, by in-situ ob-
servations'. The current densities for the
anodic polarization curves are limited above
the pitting potentials (as shown in Fig. 9). The
pitting potentials shift to less noble values,
and the surface morphologies vary in struc-
tures from clusters of crystallographic dis-
solutions to tunnel dissolutions with increas-
ing Cl™ concentration in the bulk electrolytes.
The increase in the Cl~ concentration also
makes the high potential period short, and
also makes the stability potential less noble.
The solubility of AlCls, Cs, is reduced with in-
creasing HCl concentration. Therefore, the
formation of a salt film® is enhanced in a pit
with the concentration of Cl™. The high poten-
tial period is considered to be for pit nuclea-
tion. As shown in Fig. 14, pits continue to
nucleate within a pit or other active sites until
continuous aluminum chloride films are form-
ed. During this period, the diffusion of Al’* in
the electrolyte is the rate determining step.
The crystallographic dissolutions of the (100)
faces occur after the growth of the hemi-
spherical pits, and then form half-cubic pits.
Pits with facets grow at the steady-state po-
tential which is regarded as the pitting poten-
tial.

It is known that foils with a high lead con-
tent show a serious rolling line effect after DC
etching, and lead atoms are concentrated at
the surface of the aluminum foils®. Other im-
purities in the aluminum foils, such as indium”,
bismuth and so on'”, are also well-known to
affect the etching behavior. In addition, pitting
attacks depend on the defects in the surface
oxide layer caused by the MgAl:O: spinel or

41

v -ALQOs crystals, both of which are at the
metal ridges on the aluminum substrates as
shown in Fig.15%. Three kinds of aluminum
foils with different lead contents were used in
this study. The results indicated that the dif-
ference in the lead content affected the number
of initial pits and the pitting potential during
the early stage of DC etching. It appears that
the lead atoms, which are distributed at the
surface of the aluminum foils, provide the nu-
cleation sites for the pitting attacks, although
such behavior has never been directly observed
with electron microscopes.

5. Conclusions

The relation between changes in the elec-
trode potential during the early stage of DC
etching and pit structures have been studied.
(1) The electrode potential of high purity alu-
minum foils for electrolytic capacitors moves
from a high potential period to a steady-state
period during the early stage of DC etching.
(2) Hemispherical pits occur and then grow
under the diffusion control of aluminum ions
in the electrolyte during the high potential pe-
riod.

(3) The crystallographic dissolutions of the

T T TN

Hemispherical pit

L A B ey W

Half-cubic pit Facet pit

Fig. 14 Schematic diagram for change in pit structure
during nucleation.

@ ®

Fig.15 Transmission electron micrographs of pits
around (a) MgAlQs spinel and (b) 7-Al0s
crystals after a DC etching at a current density
of 200m Acm™? in 1.5M HCI solution at 70°C for

50ms?.
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(100) faces occur after the growth of the hemi-

spherical pits, and then form half-cubic pits.

(4) Pits with facets grow under the steady-
state potential which is regarded as the pitting

potential.
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The Effect of Silicon Content of Core and Filler Alloys

on Brazeability of Aluminum Clad Fins

Yuji Hisatomi and Yoshifusa Shoji

The brazing behavior of aluminum clad fin with thickness from 60 to 80um for automotive heat
exchangers was studied in order to improve the fillet forming ability which usually declines with re-
duction of fin thickness. Three types of core alloys (Al-1.2mass%Mn-0.06~0.57mass%Si-1.5mass %
Zn) and four types of filler metals (Al-7.35~9.50mass%Si) were used. The fillet area, formed on
the fin and tube joints, increased with increasing the silicon content of both core alloys and filler
metals. The result was caused by the diffusion of silicon from the filler into the core alloy during
the heating processes of intermediate annealing and brazing. Consequently, the reduction of silicon
concentration in filler metal became small with the increase in the silicon content of core alloy. The
flow factor decreased with decreasing the fin thickness due to the residual filler with constant quan-
tity on the surface of clad fin. The fillet area tended to increase in proportion to the average con-
centration of silicon in clad fin. Then, the fillet was not formed at the low silicon concentration,
whereas the fin deformed due to the erosion of core alloy contacting with molten filler metal at the

high silicon concentration.
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LEFEERAVT, Fig. LITRT LB =37 illA
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Mz, 1 =3 7OREMNG00CICEL LBt BRIEE %S
100ppm i, T Ad —40°CHRBIR LB X H K N, RE
P 1o,
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Table 1 Chemical composition of core and filler alloys

(mass%).

Specimen Si Fe Cu Mn Mg Zn Al

A | 7.35 | 0.16 | 0.01 | 0.00 | 0.01 | 0.03 | bal.

B | 7.66 | 0.16 | 0.04 | 0.01 | 0.01 | 0.04 | bal.
filler

C | 856 | 0.13 | 0.00 } 0.00 | 0.01 | 0.02 | bal.

D | 950 | 010 | 0.00 | 0.00 | 0.00 | 0.01 | bal.

1 0.06 | 0.18 | 0.05 | 1.24 | 0.00 | 1.24 | bal.
core 2 0.29 | 0.21 | 0.05 | 1.26 | 0.00 | 1.28 | bal.

3 0.57 | 0.20 | 0.05 | 1.27 | 0.00 | 1.30 | bal.

Extruded tube
Clad fin
\

1 \ }
£
£
o

\4
1 i
> J
»

50mm

Fig.1 An assembly of mini-core with clad fin and extruded
tube.

44
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HEE 74 Y HOWMOLS5HMETERLIZETS 5,
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3. ¥ B ¥ B
Fig. 31cFE A 54 Si B (7.66, 8.56mass%) #
FOSEM SR (0.06, 0.29, 0.5Tmass%) D7 1 v
RE T0um) 2V I =a7 53 MBOKEEE%

Clad fi
a |n\

Fillet area Half height of the fin

Fig. 2 Evaluation of brazeability.
a) Fillet area : cross sectional area of brazed fillet formation
area
b) Flow factor :
filler metal before brazing from the joint point of tube to
the half height of the fin

fillet area/cross sectional area of both sizes of

Si content of Si content of filler alloys (mass%)

core alloys

(mass%) 8.56

0.06

0.57

200um

Fig. 3 Effect of Si content of core and filler metals of clad fin
on the cross section of mini-core joints after brazing
(thickness of clad fin : 70um).
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Fin thickness Si content of core alloys (mass%)

(um) 0.06 0.57

60

80

200um

Fig.4 Effect of thickness of clad fin on the cross section of
mini-core joints after brazing. (Si content of filler me-
al : 7.66mass%)
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Fillet area(x 1072mm?)
()]

0 0.2 0.4 0.6
Si content of core alloy (mass%)

Fig. 5 Effect of Si content of core and filler metals on the area
of fillet formation of clad fin after brazing (thickness
of clad fin : 70um).
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Si content of core alloys
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Thickness of clad fin (¢ m)

Fig. 6 Effect of fin thickness and Si content of core alloys on
the flow factor of clad fin after brazing. (Si content of
filler metal : 7.66mass%)
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In this study, the effects of material properties for aluminum alloy sheets (6XXX-T4) on the deep

drawing and the punch stretching formability were investigated by using FE simulation (LS-DYNA

V950). Especially, the effect of Lankford’s r-value anisotropy on the deep drawing formability has

been noticed. The simulation results almost agreed with experimental ones. Limiting Dome Height

increased with n-value. Limiting Drawing Depth decreased with yield stress and increased with n-

value and averaged r-value. Averaged draw-in at the edge of blank was related with Limiting

Drawing Depth. Deep drawing formability of the materials with anisotropy of r-value was lower

than that of the isotropic materials, because of the different draw-in for each direction of the

anisotropic materials. But the effect of anisotropy of r-value on deep drawing formability was

smaller than that of the n-value, averaged r-value. Furthermore the effect of material anisotropy

on forming limit was small when the forming shape was not axial symmetric.

1. Introduction

There were many test methods to evaluate
the sheet metal formabilities. The deep draw-
ing and punch stretching formability tests
(cup test) have been operated as the basic
formability test for automotive sheet metal.
There are many studies to investigate the rela-
tionship between material properties and
these formabilities®.

Generally, Lankford’s r-value was used for
an anisotropy parameter of the sheet metal.
As the fracture of sheet metal occurred by re-
ducing of thickness, local necking, Lankford’s
r-value was very important. The sheet metals
have a texture formed by rolling deformation,
so they have an initial anisotropy. But there
are a few papers that are related with the ef-
fect of r-value anisotropy on these form-
abilities®.

On the other hand, there were many studies
to investigate sheet metal formabilities by

* The main part of this paper was presented at the 7th
International Conference on Technology of Plastic-
ity (7th ICTP), Yokohama, Japan, October 27-
November 1, (2002).

*+ No.l Department, Research & Development Center
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using FE simulation, because of the rapid de-
velopment of FE simulation technique®.

It is well known that many factors affected
on deep drawing formabilities. Therefore, it is
very difficult to investigate the effect of these
factors on its formabilities, separately. The ef-
fect on the deep drawing and punch stretching
formabilities can be separately evaluated by
using FE simulation.

In this paper, the deep drawing and punch
stretching formabilities of 6XXX aluminum
alloy sheets, which have various yield stress,
tensile stress, n-value and r-value, were inves-
tigated by using commercial FEM software
"LS-DYNA V3507,

2. Simulation

2.1 Base material

Test material is an Al-Mg-Si alloy sheet
(6XXX-T4, t1.0mm). Tablel shows the me-
chanical properties of the base material.

2.2 Formability test model

As the basic formability test for sheet metal,
cup deep drawing and punch stretching test
have been used. Fig.1 (a) shows the equip-
ment of cup deep drawing test. Cup deep
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Table 1 Mechanical properties of the base aluminum alloy sheet.

Yield stress Tensile stress
Material Tensile direction Elongation n-value r-value
(MPa) (MPa)
0° 126 235 0.30 0.27 0.78
45° 123 231 0.33 0.27 0.40
6XXX-T4
90° 120 228 0.30 0.27 0.68
Average 123 231 0.31 0.27